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Microemulsion and lamellar phases of a vector lattice model
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We examine a three-dimensional vector lattice model for water, oil, and amphiphile mixtures,
using the mean-field and Bethe approximations as well as Monte Carlo methods. The Monte Carlo
results exhibit three-phase coexistence between water-rich, oil-rich, and microemulsion phases, where
the microemulsion has low amphiphile concentration (~15%) in agreement with experiment. Also
present is a floating incommensurate lamellar phase which coexists with the microemulsion at slightly
higher amphiphile concentration, similar to lamellar phases observed experimentally. These features
are absent in the two mean-field-like approximations and we conclude that, in general, these types
of approximations are inappropriate for describing mixtures containing efficient amphiphiles.

PACS number(s): 61.20.Gy, 05.50.+q, 64.60.Cn

I. INTRODUCTION

Under standard conditions, oil and water are highly
immiscible, but with the addition of small amounts of
amphiphile it becomes favorable for them to mix. Al-
though mixed on a macroscopic scale, water and oil re-
main separated on a microscopic scale by monolayers
of amphiphile. These monolayers may form structures
with long-range order as in the lamellar, hexagonal, and
cubic phases, or instead may result in a disordered mi-
croemulsion phase [1]. The ordered phases, generally, ex-
ist at lower temperatures and higher amphiphile concen-
trations than the microemulsion, which can occur with
amphiphile concentrations as low as a few percent. This
feature of the microemulsion makes it a phase of partic-
ular interest.

In reality, the microemulsion is part of a more gen-
eral disordered (D) phase. At high temperatures, the D
phase is an ordinary simple fluid with virtually no inter-
nal structure, but at low temperatures it acquires the dis-
tinct short-range structure characteristic of a microemul-
sion, comnsisting of fluctuating bicontinuous domains of
water and oil separated by a vast layer of amphiphile.
Although there is no phase transition to separate these
behaviors, several criteria have been introduced for this
purpose [2]. The disorder line is one such boundary, de-
fined as the locus where the water-water correlation func-
tion changes from being monotonically decaying in the
ordinary fluid to oscillatory decaying in the microemul-
sion. Alternatively, the Lifshitz line is the locus at which
the water-water structure function develops a peak at
nonzero wave vector, signifying a microemulsion.

There have been a number of model studies [3—6] in
which the major aim has been to produce three-phase
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coexistence between water-rich (W), oil-rich (O), and
microemulsion (D) phases. Ideally, the microemulsion
that these models exhibit should have a low amphiphile
concentration in agreement with experiment. The am-
phiphile molecules that are present should mainly be
found along interfaces between microdomains of water
and oil. Also, the water-water correlation and structure
functions should exhibit the behavior described above.
Surprisingly, this has proven to be a considerable chal-
lenge.

Early models for ternary mixtures of water, oil, and
amphiphile were usually examined by mean-field-like ap-
proximations [7-13]. The most common failure encoun-
tered in these studies was the inability to explain how
small amounts of amphiphile could produce water-oil
miscibility. We will show that this is not a failure of
the models but rather of the mean-field-like approxima-
tions, which are unable to treat phases with short-range
structure like that of a microemulsion. This problem is
overcome by using Monte Carlo methods.

In early Monte Carlo work, two-dimensional models
were studied, as these require less computational effort.
A problem with this work was that once the amphiphile
efficiency was great enough to produce a lamellar phase
the models no longer seemed to exhibit W + O + D three-
phase coexistence [7,14]. In some studies [3,15,16], there
was evidence of three-phase coexistence, but it was not
very compelling and was likely due to finite-size effects
and extremely slow Monte Carlo dynamics. Reference
[17] discusses why two-dimensional models do not exhibit
this coexistence, and links it to the fact that in two di-
mensions the amphiphilic monolayers are only one dimen-
sional. Three-dimensional models, on the other hand,
have been successful in obtaining three-phase coexistence
[4-6,8,18].

In this paper, we study a three-dimensional lattice
model for mixtures of water, oil, and amphiphile. First,
we examine the phase diagrams of the model using the
mean-field and Bethe approximations. We find that these
approximations produce unreliable results and we discuss
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why this is so. We determine the true behavior of the
model using Monte Carlo techniques. These reveal that
the model exhibits a W 4 O + D triple line where the D
phase is a microemulsion with low amphiphile concentra-
tion. The model is also found to exhibit various lamellar
phases, some in which the amphiphilic monolayers are
pinned to the underlying lattice with a commensurate
period and an incommensurate one where the monolay-
ers float freely from the lattice. Our studies of the transi-
tions involving these and other periodic phases produced
by the model are still preliminary, further examination
being deferred to future work.

II. MODEL

Various models have been proposed to describe water-
oil-amphiphile mixtures, most of which are discussed in
a recent review by Gompper and Schick [2]. Here we
consider a model introduced earlier [2,3,9,10,14,15,19,20],
which is particularly well suited for Monte Carlo tech-
niques. It is a vector lattice model, where the molecules
are restricted to sites on a lattice and the amphiphiles
are represented by unit vectors that point in the direc-
tion of their head groups. In the present work, we use
the face-centered-cubic (fcc) lattice because its large co-
ordination number renders it the most realistic lattice
for representing a liquid. At each site ¢ on the lattice,
we define two state variables, o; and s;. The variable o;
takes on a value of 1, 0, or —1 if site 7 is occupied by
water, amphiphile, or oil, respectively. When o; = 0, s;
is a unit vector representing the orientation of the am-
phiphile molecule at site ¢, and otherwise s; = 0. In
the same spirit that molecules are only permitted to oc-
cupy sites of a lattice, s; is restricted to a discrete set
of orientations such that it points towards one of the 12
nearest neighbors of site 2. Although there is no difficulty
in allowing a continuous range of orientations [8], Monte
Carlo calculations are considerably simplified if only a
finite number are retained.

The Hamiltonian we use is a simplified version of one
we introduced earlier [9]. Here we only retain the minimal
number of terms necessary to produce the behavior of a
microemulsion;

H= — J1 Z 0,05 — J2 Z (O'iSj *Tjq + 0;8; rij)
(i3) (3)

+mZd?, (1)

where (ij) denotes summation over all distinct pairs of
nearest-neighbor sites ¢ and j. The unit vector r;; speci-
fies the direction from lattice site ¢ to site j. The param-
eter J; > 0 favors water-oil separation and J; > 0 gives
the amphiphile tails their hydrophobic behavior and the
heads their hydrophilic behavior. The particular results
presented here are for the case J;/J; = 2, which we find
corresponds to a reasonably efficient amphiphile. In the
last term, p; is the chemical potential of the amphiphile.
The absence of a chemical-potential term coupling to o;

means that we are dealing with a balanced system of
equal water and oil concentrations.

III. MEAN-FIELD AND BETHE
APPROXIMATIONS

In this section, we present the phase diagrams for the
above model obtained using the mean-field and Bethe
approximations. These approximations are described in
detail in our earlier work [9]. Our aim is primarily to
examine the reliability of these approximations for mod-
els of microemulsions by comparison with Monte Carlo
results, which will be presented in the following section.

Besides the three uniform phases, the water-rich (W),
oil-rich (O), and disordered (D) ones, we consider a se-
ries of commensurate lamellar (L,,) phases. The L,, phase
consists of alternating water-rich and oil-rich regions each
n layers thick, separated by monolayers of amphiphile,
such that its period is 2(n + 1). The lamellae are nor-
mal to the [111] direction. Other more elaborate com-
mensurate lamellar phases like those present in the axial
next-nearest-neighbor Ising (ANNNI) model [21], which
we discuss later, are not considered in this section. We
also do not consider tubular phases, where water and oil
form tubes arranged periodically and separated from one
another by films of amphiphile. These latter phases oc-
cur at high amphiphile densities (p, = 0.75), a region of
the phase diagram with which we are not concerned.

The mean-field and Bethe approximations produce
very similar phase diagrams. Figures 1 and 2 show them
in the temperature versus chemical-potential plane. Solid
lines denote first-order transitions and dashed lines indi-
cate second-order ones. The W and O phases coexist at
small p, and the D phase is stable at large u;. Between
these are regions of stability of the various L,, phases. In
both figures, the first four regions for n = 1 to 4 are la-
beled. We find that they continue on sequentially up to at

k,T/J,
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FIG. 1. Mean-field phase diagram plotted in the temper-
ature versus chemical potential plane. Solid lines denote
first-order transitions and dashed lines denote second-order
ones. The Lifshitz line is indicated with a dotted line and the
Lifshitz critical point with a single dot.
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FIG. 2. Same as Fig. 1 except calculated with the Bethe
approximation.

least n = 8 and we suspect up to infinity. These regions
of stability for increasing n become smaller and smaller
on approaching a Lifshitz critical point [21,22], marked
by dots in Figs. 1 and 2, beyond which the W + O re-
gion undergoes direct second-order transitions to the D
phase.

At low temperatures, the free energy of the phases is
reasonably well approximated by F' = E; — T'S,y, where
E, is the ground-state energy and S, is the ground-state
entropy due to the orientational degeneracy of the am-
phiphile molecules. Comparing these free energies, we
find that the W + O and L, phases are approximately
separated by the line

Hs =9J1—4J2—kBTln3 . (2)

One also finds that if the other L, phases with n > 2
exist at low temperatures, they must do so in narrow
regions that approximately follow this line. Similarly the
transition between the L; and D phases is found to occur
at approximately

e =3J1 +4J2 + kT (In3 — 21n12) . 3)

This transition is only metastable at low temperatures
as a tubular phase, noted earlier and not examined here,
occurs between the L; and D phases.

From an experimental point of view, the grand-
canonical phase diagrams in Figs. 1 and 2 are not that
meaningful. Furthermore, the experimentally relevant
canonical phase diagrams provide important additional
information. For these reasons, we also show the phase
diagrams in the temperature versus density plane in Figs.
3 and 4. Here, we just label those regions labeled previ-
ously and not any of the additional coexistence regions
which now appear.

There are only a couple of small topological differences
between the mean-field and Bethe phase diagrams. In
the Bethe approximation, the entire D + L, transition
is second order whereas in mean field a portion of it is
first order. In mean field, we also find that the L4 phase
reappears at low temperatures. It is possible that this

FIG. 3. Mean-field phase diagram plotted in the tempera-
ture versus amphiphile density plane.

happens also in the Bethe approximation at a tempera-
ture below kg7 /J; = 0.8. Below this temperature along
the line given by Eq. (2), the free energies of the vari-
ous lamellar phases become too close to determine with
certainty their relative stabilities.

For the mean-field phase diagrams, we calculate the
Lifshitz line by the method described in Ref. [9]. Be-
cause the calculation is much more involved and similar
behavior is expected, we do not repeat it for the Bethe
approximation. Within mean field, this line, shown with
a dotted line in Figs. 1 and 3, is given by

~ 6 _ 3kgTd
" 6+exp(—us/ksT) 8 J?

Ps (4)
This line intercepts the locus of second-order transitions
at the Lifshitz critical point. The D phase on the low-
temperature side of this line is identified with the mi-
croemulsion. We note that in our previous calculations
with the current theory [9], using slightly different model
interactions on a cubic lattice, a Lifshitz critical point

FIG. 4. Same as Fig. 3 except calculated with the Bethe
approximation.
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did not occur. There, the W + O to D transition line ex-
hibited a tricritical point, becoming first order at lower
temperatures, with the Lifshitz line intersecting the lo-
cus of first-order transitions. A similar result will occur
in the present model for values of J/J; < 3/2.

IV. MONTE CARLO

Figures 5 and 6 show the phase diagrams calculated
using Monte Carlo techniques. The Monte Carlo results
presented here have been obtained using the heat bath al-
gorithm [23]. With this algorithm, a given site is flipped
to a particular state with a probability proportional to
the Boltzmann weight, exp[—FE;(z)/kgT], where E;(x) is
the energy of site ¢ in state x due to the chemical po-
tential and interactions with its neighbors. Comparing
this algorithm to the standard Metropolis algorithm, we
find it to be somewhat longer in the time required to per-
form each Monte Carlo step, but this is more than com-
pensated for by the reduced correlation between Monte
Carlo steps. Overall, the heat bath algorithm performs
significantly better than the Metropolis one for the model
studied here.

The Monte Carlo phase diagrams differ significantly
from the mean-field and Bethe results. The first differ-
ence is that the W + O to D transition line exhibits both
first-order and second-order parts, separated by a tri-
critical point. To determine the location of the second-
order line, we utilize a finite-size scaling method [24]
in conjunction with a histogram extrapolation method
[25]. Here we use £ x £ x L lattices subject to periodic
boundary conditions. For a fcc lattice, each unit cell has
four lattice sites and thus the total number of sites, IV,
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FIG. 5. Monte Carlo phase diagram in the 7 versus pu,
plane. Circles indicate points calculated by Monte Carlo and
the diamond is an estimate of the tricritical point. The in-
set shows some hypothetical phase boundaries for the lamel-
lar phases. The unlabeled region indicates the approximate
region where the long-period commensurate lamellar phases
exist.
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FIG. 6. Monte Carlo phase diagram in the 7' versus p,
plane. Calculated lines are denoted with circles indicating
measured points while the other lines are hypothetical. Be-
cause the D 4+ Lr coexistence region is so narrow, we only
show the region of stability for the Lr phase in the inset.

is 4£3. Using short runs, we approximately locate the
transition at a fixed chemical potential bg finding a peak
in the heat capacity, C = ((H?) — (H)*)/kpT?, where
angle brackets denote thermodynamic averages. Once
this is done, long runs are performed at the approximate
temperature for at least three different system sizes, £
[26]. For each L, we calculate as a function of tempera-

ture the fourth-order cumulant, U = 1— <M4> /3 <M2>2,
where M = |}, 0;| is the water-oil difference (or magne-
tization). Its temperature dependence is determined by
the histogram extrapolation method as opposed to doing
separate runs for different temperatures. In Fig. 7 we
show a plot of U versus T for three system sizes from

0.8 T T T 100

0.4 L -

L 20

3.492 3.493

k,T/7,

3.491

FIG. 7. Plot of the fourth-order cumulant U for three sys-
tem sizes, £ = 18, 22, and 26 (solid lines), and of the heat
capacity per lattice site, C/Nkp, for £ = 26 (dashed curve).
At this chemical potential, p,/J1 = —5.7, the critical temper-
ature is kp7T./J: = 3.4916.
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runs at kgT/J; = 3.492 and p,/J; = —5.7. For each
run, the system is allowed to equilibrate for 10° Monte
Carlo steps (MCS) per site and statistics are collected
for the following 108 MCS. The curves for £ = 18, 22,
and 26 cross at the transition, kgT./J; = 3.4916. If U is
plotted as a function of (T/T. — 1)L/ using the three-
dimensional Ising exponent, v = 0.6294 [27], the curves
approximately collapse onto a single curve. Similarly we
find that plotting other quantities, namely, the magneti-
zation, the magnetic susceptibility, and the heat capacity,
and scaling these with three-dimensional Ising exponents,
causes the data to collapse onto universal curves. From
this, we can be confident that the transition we located
is second order.

Table I lists the coordinates for some points along
the second-order line. The first one, for p, = —oo,
corresponds to the spin-% Ising model, and is obtained
from Ref. [27]. With the exception of the last point at
ts/J1 = —4.2, all the points have been determined by the
finite-size scaling method described above. For the point
at ps/J1 = —4.2, it would be necessary to use exception-
ally large system sizes for that method to work. Instead,
we have located its position by finding a peak in the heat
capacity. Based on our results for p,/J; = —5.7 (see
Fig. 7), we expect this criterion to be reasonably accu-
rate in locating the transition temperature, but with this
method one cannot be certain that it is on the second-
order line as opposed to the W + O + D first-order line.
In fact, based on our results below for the W + O + D
triple line, we believe that this point is in close proximity
to the tricritical point. We estimate the latter point to
occur at p,/J; = —3.9, kgT/J; = 2.9, and p, = 0.19.

To calculate the W + O+ D triple line, we first locate a
hysteresis at a fixed chemical potential and assume that
the transition temperature is in the middle of the hys-
teresis range. If the hysteresis is small, this provides a
reasonably accurate estimate of the transition. Then we
do two runs at the estimated temperature, one for the
W or O phase and another for the D phase, to obtain
their amphiphile densities. Our results are shown in Ta-
ble II. Ideally, large system sizes (i.e., £ = 26) should be
used in order to avoid finite-size effects. This is possible
at the higher temperatures, but at the lower tempera-
tures we have to use smaller system sizes (i.e., £ = 12)
so that the hysteresis range does not become too large.
Fortunately, at the lower temperatures where the first-
order transition is strong, it is less important to obtain

TABLE I. Monte Carlo results for the second-order W + O
to D transition line.

/l.s/.]1 kBT/Jl Ps
—00 9.80 0.0
—28.4 8.007 0.133
—21.0 7.010 0.202
—15.4 6.010 0.265
—10.9 4.995 0.309
—-9.0 4.495 0.322
—-7.2 3.970 0.314
—5.7 3.4916 0.271
—4.2 2.9805 0.208

TABLE II. Monte Carlo results for the W + O + D triple
line.

is/J1 ksT/J1 ps (W + O) ps (D)
-3.0 2.5453 0.077 0.185
—2.5 2.3555 0.049 0.182
—2.0 2.1565 0.030 0.176
-1.5 1.945 0.016 0.161
—-1.25 1.83 0.011 0.150

accurate estimates of the transition temperature because
the amphiphile densities have a weaker T dependence at
fixed pu,. For the two runs used to obtain the amphiphile
densities, nothing prevents us from using large system
sizes.

For p,/J; = —3.0, we did not find a hysteresis even
for large system sizes such as £ = 26. In Fig. 8 we show
a histogram for a run of 2 x 108 MCS on an £ = 26
lattice at kT /J; = 2.5453. At this point, the first-
order transition is weak enough that the system can cross
back and forth between the W + O phases and the D
phase, producing peaks in the histogram at p, = 0.077
and 0.185, respectively. The average time that the system
remains in one phase is 3 x 10®> MCS. Figure 9 shows slices
through equilibrium configurations of the system when it
is in the W and D phases. It is interesting to note that
the W phase exhibits micelles [see Fig. 9(a)] and that the
D phase possesses a well-defined microemulsion structure
[see Fig. 9(b)].

Due to slow Monte Carlo dynamics of the lamellar
phase as well as a strong temperature variation of the
amphiphile densities along the lamellar-disordered tran-
sition curve, a different strategy has been employed to
locate the latter transitions, based on creating an inter-
face [28]. A lattice consisting of £, (111) layers each with
47 sites is used, usually with £, between two and three
times £. Initially, half the lattice is placed in a disor-
dered configuration and the other half in a lamellar state
with lamellae parallel to the interface. The sites in the

15 T T

| T

10 -

0 I - 1 1
0.0 0.1 0.2 0.3
Ps

FIG. 8. Histogram showing the normalized probability
density p with respect to p, obtained from a run of
2 x 10° MCS on an £ = 26 lattice at p,/J; = —3.0 and
ksT/Jy = 2.5453.
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nature of the L + D transition. Similarly, we found this
equation to be satisfied along the W + O + D triple line.

The major source of uncertainty in our results for the
amphiphile density and the period of the Lp phase is
due to discretization of their allowed values by the finite
system size. This discretization is somewhat alleviated
in our interface runs, but persists in our bulk runs which
use periodic boundary conditions to determine the equi-
librium values of p, and the period. For this reason,
these results have generally been averaged over several
independent runs using different values of £,.

As seen by comparing Figs. 1, 2, and 5, the temper-
ature of the L + D boundary for the incommensurate
Lz phase is much lower than that of the commensurate
L,, phases in the corresponding region of u, predicted by
the mean-field and Bethe approximations. The fact that
fluctuations have driven the transition first order is in
agreement with general arguments for roughened phases
[2,30] as well as with evidence from studies [31] of the
Widom model [32] for microemulsions. It is likely that,
below some locus of roughening transitions in the phase
diagram, the lamellar phase becomes commensurate. Al-
though we have not attempted to locate such a roughen-
ing boundary, evidence for the existence of smooth com-
mensurate lamellar phases at lower temperatures is dis-
cussed below. The inset of Fig. 5 indicates the region
where they should exist.

The extrapolation of our L + D transition line towards
the W + O + D triple line (see Fig. 5) indicates that a
W + O + L + D four-phase point exists at kgT'/J; =~ 1.8.
Below this, the W + O phases should transform directly
to the lamellar phase. In two dimensions, this should not
happen because the microemulsion is thought to extend
between the W + O and L regions down to zero temper-
ature [14-16,19], which then prohibits the existence of a
W + O + D triple line [17]. Because the triple line is
present in three dimensions, there should also be direct
transitions between the W + O and L phases, and we
do find them. Similarly, we would expect them to oc-
cur in the Monte Carlo phase diagram in Ref. [8] if the
W + O phase boundary was explored at sufficiently low
temperatures.

To determine points along the W + O + L transition,
we perform Monte Carlo runs starting from a mixed con-
figuration of W and L phases. At u,/J; = —0.75, we
find that the W phase prevails if kgT/J; < 1.54 and
the L phase dominates for kgT'/J; > 1.55. According
to the low-temperature estimate Eq. (2), the transition
should be at approximately kgT/J; = 1.593. The mean-
field and Bethe approximations predict 1.561 and 1.545,
respectively. These results all agree quite well. In par-
ticular, the Bethe approximation does very well and we
expect that it can be trusted as one follows the transi-
tion to lower temperatures. For p,/J; = —1.0, fluctu-
ation effects start to become significant. Here Eq. (2),
the mean-field, and the Bethe approximations predict
transition temperatures of 1.820, 1.760, and 1.732, re-
spectively. From Monte Carlo, we find the transition to
occur between 1.69 and 1.70. The Bethe approximation
is still not too bad, but we expect this is about the limit
to which it can be trusted. At p/J; = —0.75, we find

that the lamellar phase exhibits smooth monolayers of
amphiphile locked into the (111) layers of the lattice, but
some roughness appears in the lamellae at p,/J; = —1.0.
In both cases, the dynamics are too slow for us to deter-
mine the correct amphiphile density and period of the L

phase.
Because of the slow dynamics, we used a small sys-
tem size, L = £, = 12, in the Monte Carlo runs for

the W + O + L transition. Although this should be suffi-
cient for dealing with W, O, and commensurate L phases
where fluctuations are small, it may not be so for the mi-
croemulsion phase. In order to be reasonably certain that
the microemulsion does not actually penetrate between
the W + O and L phases for the cases above, we have
also examined a larger lattice. For temperatures in the
vicinity of the W + O+ L transition at ps/J; = —1.0 and
—0.75, we have started Monte Carlo runs on an £ = 26
lattice with an initial configuration obtained from the mi-
croemulsion phase at p,/J; = —1.25 and kgT'/J; = 1.83.
For the runs at p,/J; = —0.75, we find the curved am-
phiphilic layers of the microemulsion to be unfavorable,
quickly evolving towards flat monolayers which become
pinned to the underlying lattice. Thus we are quite cer-
tain that the microemulsion as well as the floating incom-
mensurate lamellar phase must be unstable there. For
ps/J1 = —1.0, we are quite certain that the microemul-
sion is unstable but we cannot say the same regarding
the Ly phase.

V. DISCUSSION

One of the more striking observations from our results
is the inaccuracy of the mean-field and Bethe phase di-
agrams in comparison to the Monte Carlo ones. Clearly
this suggests that one must be cautious when dealing
with such approximations. Indications of this have sur-
faced in previous work [3,4,7,8,14,28]. The explanation
for this discrepancy is straightforward, but it is somewhat
surprising how large it is and that the Bethe approxima-
tion does not improve the situation.

The limitation of mean-field theory is that it cannot
deal with short-range order or any type of order that is
not pinned to the underlying lattice. Hence it cannot
properly treat the microemulsion or the floating incom-
mensurate lamellar phase. It can reasonably well treat
the W and O phases as well as the commensurate ordered
phases, because in those cases the instantaneous field
experienced by a particular lattice site remains nearly
constant and can be reliably approximated by its aver-
age value, hence validating mean-field theory. For the
disordered phase, the instantaneous fields fluctuate sig-
nificantly and are not at all approximated well by their
mean values. At high temperatures, mean-field theory is
still adequate, although only because kgT is large com-
pared to the instantaneous fields and it matters little
how poorly the latter are represented. At lower temper-
atures, where the microemulsion structure sets in, this
is no longer true and mean-field theory fails. This also
applies to the floating incommensurate lamellar phase.

The inability of mean-field theory to deal with the



51 MICROEMULSION AND LAMELLAR PHASES OF A VECTOR ... 555

microemulsion structure is revealed in numerous ways.
For example, in a balanced (i.e., (M) = 0) microemul-
sion, the theory predicts that <Z (i5) a,-aj> = 0, indicat-
ing that water and oil are homogeneously mixed rather
than existing in microdomains separated by amphiphilic
sheets as in Fig. 9(b). This also means that the the-
ory evaluates the internal energy F incorrectly. In addi-
tion, the theory seriously overestimates the entropy S
of a microemulsion. Specifically, in the canonical en-
semble (i.e., with concentrations held fixed), it maxi-
mizes the entropy, which for the present model gives
S/Nkp = —psIn(ps/12) — (1 — ps) In[(1 — p,)/2]. For a
structureless fluid this is appropriate, but as the Lifshitz
line is crossed when T decreases at fixed p, (see Fig. 3),
the entropy should decrease, reflecting the development
of microemulsion structure within the D phase. In short,
mean-field theory incorrectly calculates the free energy,
F = E—TS, for a microemulsion, which casts doubts on
the accuracy of the resulting phase diagram. This prob-
lem is inherently related to the absence of correlations
within mean-field theory and can only be overcome by
using a theory that accounts for correlations.

In many models, such as the spin—% Ising model, re-
sults obtained by the cluster-variational method converge
rapidly to the exact ones with increasing cluster size [33].
Thus the Bethe approximation produces a substantial
improvement over mean field, and the Kikuchi approx-
imation offers a similar improvement over that. In the
present case, we find the Bethe approximation does not
offer a significant improvement over mean field. We ex-
pect that very large-sized clusters must be considered for
an accurate treatment and thus cluster-variational meth-
ods are not appropriate for studying models that produce
microemulsions.

Understanding these inadequacies of the mean-field
and Bethe approximations allows one to make sense of
their phase diagrams. At low temperatures, they pro-
duce the correct transition behavior between the W, O,
and L,, phases, in this case up to temperatures of about
kgT/J, = 1.7. At high temperatures, the second-order
line is qualitatively correct down to temperatures where
the Lifshitz point is predicted. Below this point the
two approximations predict weakly structured lamellar
phases where the lamellae are pinned to the lattice. If
the approximations handled fluctuations correctly, this
region would be replaced first by the microemulsion and
then by the incommensurate lamellar phase at lower tem-
peratures. This is why mean-field-like approximations
have never properly produced microemulsions at low am-
phiphile concentrations. In the region where the mi-
croemulsion should exist, these approximations have in-
stead incorrectly predicted ordered phases.

In some cases, mean-field theories have led to disor-
dered phases with low amphiphile concentrations [8,11],
but we point out that these are not due to the physi-
cal mechanism embodied in the present model whereby
the amphiphile molecules attract water to one end and
oil to the other. Instead, these low concentrations result
because the amphiphile is treated as a simple impurity
which has a favorable interaction with both water and

oil. The term —K; z<ij) aiza'Jz- that occurs in the Blume-
Emery-Griffiths model can achieve this with K; > 0.
Although such an interaction tends to mix water and oil
together, the resulting disordered phase is structureless
as opposed to being a microemulsion [11]. The mean-
field disordered phase of Ref. [12] also exhibits a low am-
phiphile concentration along the triple line. In this case,
appropriate interactions are used (see end of this section
and Ref. [36]), but the calculation still suffers from the
problems discussed above and therefore the mean-field
phase diagrams in Ref. [12] may be considerably inaccu-
rate. This is supported to some extent by Monte Carlo
calculations in Ref. [18].

Although we have not calculated the Lifshitz line us-
ing Monte Carlo, we conjecture that its behavior is as
follows. At high temperatures, it should behave like
the mean-field result but rather than heading towards
a Lifshitz point it will likely head towards the point in
the second-order line where the amphiphile concentra-
tion peaks, kpT'/J: = 4.5 (see Fig. 6). Because the oc-
currence of a Lifshitz critical point is ruled out by the
presence of three-phase W + O + D coexistence in our
Monte Carlo results, the Lifshitz line cannot intersect the
locus of second-order transitions. Instead, we expect it to
follow closely below the line of second-order transitions,
eventually intersecting the W + O + D triple line.

Below the microemulsion, we find transitions to or-
dered lamellar phases. For p5/J; > —0.6, the microemul-
sion transforms into the commensurate L; phase as the
temperature is lowered. In this phase, the amphiphilic
monolayers are packed tightly together with a period of
only four layers, leaving little room for the monolayers
to fluctuate. As a result, this phase exhibits flat mono-
layers that are pinned to the lattice. For lower chemi-
cal potentials, a lamellar phase forms with wider layers
of water and oil, which allow the amphiphilic monolay-
ers to fluctuate. Such fluctuations free the monolayers
from the lattice, resulting in a floating incommensurate
lamellar (Lp) phase. In this phase, the period increases
continuously with decreasing chemical potential. If the
temperature is lowered further, we expect this Ly phase
to undergo a transition analogous to a roughening tran-
sition and the amphiphilic layers to become flat, locking
into the (111) layers of the lattice.

Even with flat amphiphilic layers that lock into the
lattice, incommensurate periods would be possible if the
widths of the water and oil layers were random. Cer-
tainly, random water and oil widths would result in addi-
tional entropy that could lower the free energy. However,
on evaluating this entropy, one finds that it increases only
proportional to £ whereas the volume of the system in-
creases as £3, and thus it is irrelevant in the thermody-
namic limit N — oo. Thus when lamellae are pinned to
the underlying lattice, there is no entropic advantage to
forming an incommensurate phase. Instead the widths
of the water and oil layers will be determined by fluctu-
ations that mostly involve small-sized clusters, resulting
in commensurate lamellar phases such as the L,, phases
examined in Sec. III. As well, more elaborate lamellar
phases where not all the oil and water layers have equal
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widths may occur. We expect behavior similar to that in
the ANNNI model, where an infinity of distinct phases,
commensurate with the underlying lattice, emerges from
a multiphase point at zero temperature [21]. To prop-
erly examine these phases would require developing an
involved low-temperature series expansion like that con-
sidered for the ANNNI model [34].

Reference [8] uses a vector lattice model similar to
the present one with only nearest-neighbor interactions,
which also produces long-period lamellar phases. How-
ever, these phases do not appear in the mean-field re-
sults of Ref. [8] as they do here, perhaps due to a small
error that occurs in the calculations [35] or perhaps be-
cause the authors simply did not consider them. In their
Monte Carlo work, they observe both the commensurate
L, (period-6) and L3 (period-8) lamellar phases. It is
claimed that these phases can evolve into the D phase
without passing through a phase transition. As these
lamellar phases and the D phase have different symme-
tries, this should not be possible. We expect that a more
careful examination of this region would reveal such tran-
sitions and perhaps would also reveal a floating incom-
mensurate phase like the one we observe.

Stockfisch and Wheeler [4] have used Monte Carlo to
examine a lattice model which they had earlier intro-
duced and examined by mean-field theory [13]. Their
Monte Carlo work primarily focused on demonstrating
the existence of three-phase coexistence. They noted
that their earlier mean-field results were not reliable and,
as well, they found it necessary to introduce additional

many-body interactions representing surfactant bending
energy effects in order to achieve three-phase coexistence
in their Monte Carlo calculations. A similar finding is
the necessity to add further many-body interactions to
the Widom model of microemulsions [32] in order to pro-
duce three-phase coexistence in that model [5]. These
features contrast with the present vector model, where
the only elements necessary for producing three-phase
coexistence are appropriate two-body interactions on a
three-dimensional lattice [36]. A further advantage of
the present model is that it can account for the more
complex topology of the phase diagrams of nonionic am-
phiphiles [1], on being generalized to include the effects
of hydrogen bonding between water and amphiphile [37].
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